Literature Review of the Effects of UV Exposure on PV Modules

Lawrence Dunn, Michael Gostein and Bill Stueve Atonometrics, Inc. Austin, Texas 78757 <u>www.atonometrics.com</u>

Prepared for NREL PV Module Reliability Workshop February 16-17, 2013

lawrence.dunn@atonometrics.com michael.gostein@atonometrics.com bill.stueve@atonometrics.com

Abstract

- Understanding the factors affecting the outdoor degradation and eventual failure of PV modules is crucial to the success of the PV industry. A significant factor responsible for PV module degradation is exposure to the UV component of solar radiation.
- We present here a literature review of the effects of prolonged UV exposure of PV modules, with a particular emphasis on UV exposure testing using artificial light sources, including fluorescent, Xenon, and metal halide lamps.
- We review known degradation mechanisms which have been shown to arise from UV exposure of PV modules, and examine the dependence of those degradation mechanisms on UV exposure.

UV Exposure and IEC Preconditioning Tests

- The PV module qualification tests (*e.g.*, IEC 61215 [1] and IEC 61646 [2]) are not meant to simulate outdoor UV exposure for extended periods of time.
- The "UV Preconditioning" sections of the IEC standards mentioned above typically require 15 kWh/m² of total UVA+UVB exposure (280 nm 400 nm), and at least 5 kWh/m² of UVB exposure (280 nm 320 nm). The IEC standards require that the UV light source used emit light with a UVB content between 3% and 10%.
- The standard AM 1.5 spectrum [3] contains 46.1 W/m² between 280 nm and 400 nm, and 1.52 W/m² between 280 nm and 320 nm.
 - ~5% of the AM 1.5 Spectrum is UVA+UVB, and ~0.15% is UVB.
 - 15 kWh/m² (between 280 nm and 400 nm) corresponds to 13.5 days under the AM 1.5 spectrum.
 - 5 kWh/m² (between 280 nm and 400 nm) corresponds to 137 days (~4.5 months) under the AM 1.5 spectrum
- Annual total UV exposure in the Negev Desert is on the order of 120 kWh/m² [4]. 25 years of outdoor exposure in this environment is equivalent to approximately 3000 kWh/m².
 - The proscribed total UV dose in the IEC preconditioning tests of **15** kWh/m² simulates
 - 2-4 months (conservatively) of real world operation [5].
- IEC UV Preconditioning tests provide no information on module lifetime.

Encapsulant Issues

EVA Browning

- The browning of EVA encapsulant used in PV modules with outdoor exposure has been observed since at least the late 1980s at the Carrisa Planes PV installation [6]–[9].
- Later observations and studies appeared in the mid-1990s [10], [11], although at this time the agent responsible for

EVA browning had not been identified. It is interesting that even in 1994 the authors of Ref. [10] noted that Cerium Oxide-containing glass (which blocks UV radiation below 350 nm) prevented EVA discoloration in indoor tests.

Figure A taken from Ref. [8].

EVA Browning

- Formulations of EVA that undergo yellowing/browning has also been shown to produce acetic acid, with UV exposure which corrodes solder bonds and electrical contacts [12]–[14]. This also corresponds to increased leakage current through the encapsulant [15].
- EVA adhesion and shear strength also studied, both shown to decrease significantly with EVA degradation [12], [16];
- By 1996-1997 it had been found that that EVA discoloration could be mediated through different EVA formulations (*i.e.*, the use of different additives), and by UV blocking glass [6], [13], [16]–[18].

Fig. A taken from Ref [16]. Fig. B taken from Ref. [8].

UV Exposure Lit. Review: NREL PV Module Reliability Workshop, February 2013 This presentation does not contain any confidential or proprietary information

Lap Shear Strength and Yellowness Index of EVA after exposure to 60 °C/60% Relative Humiditiy, and 2.5 UV Suns.

Optical Losses due to EVA Browning

Α

(%) (%)

Efficiency 60

Quantum

- Browning of EVA can cause a significant change in the perceived optical transmission of c-Si cells [8], [19], [20].
- Performance Losses initially attributed optical losses at the from EVA browning at the Carrisa Planes Site have later attributed to Fill Factor Losses due to solder-bond degradation and inadequate use of bypass diodes [21].

J. Pern, Mono-Si, encapsulated

Temperature = 25.0°C

Area used = 104.0 cm³

S=귀*

Sample: 01A8-NW-5

Apr. 19, 1991 12:12 pm

2500

AS(R2,C5)

Temperature = 25.0°C

SERIX

Sample: 4703-C-1

Quantum Efficiency (%)

2

Mar. 7, 1991 1:31 pn

Encapsulant Adhesion & Delamination

- Encapsulant delamination with prolonged outdoor exposure of PV modules is a wellknown phenomenon [19], [23]–[26]. However, separating the effects of UV exposure and moisture on encapsulant delamination is not trivial.
- In 2003 Jorgensen *et al.* measured the "Peel Strength" of EVA layers vacuum laminated to various backsheet materials after exposure to a Xenon UV source at intensities of ~1 sun [27]. The results of the study are shown in the table below.
- Kempe has also quantified the effect of UV exposure on EVA adhesion via Lap Shear studies. See, *e.g.*, Ref. [16], and Fig. A on Slide 6.

Peel strength (N/mm) at the EVA/coating interface as a function of exposure time in an Atlas Ci4000 Xenon Weather-Ometer (light intensity ~1 sun, 65°C, and 10% RH).

	Time of Ci4000 Exposure (h)			
Backsheet	0	400	800	1200
AKT Coated PET	11.4	13.0	7.2	6.4
NREL Coated PET	11.4	12.1	6.9	4.2
Uncoated PET	0.5	0.5	0.5	
TPE	7.5	7.0	0.5	
TAT	0.5	0.6	1.5	

Image of cell with delaminated encapsulant taken from Ref. [26]

EVA Alternatives

- Silicone has been shown to be more stable with UV exposure than EVA [15], [16], [28]
- Silicone encapsulants has been shown to have better optical transmission than EVA encapsulants. [29]–[31], resulting in one study in a 0.5% to 1.5% relative increase in PV module efficiency, mostly due to an increase in transmission below 400 nm [31].
- At least one study has examined the decrease in light transmittance and PV module efficiency for silicone-encapsulated PV modules with UV light exposure under an AMO spectrum [32]. The authors found a ~15% decrease in PV module efficiency after a ~15 year UV dose.

Figures taken from Ref. [28].

Intrinsic c-Si Degradation with UV

Exposure

Intrinsic c-Si Isc Degradation with UV Exposure

- In 2003, Osterwald *et al.* published the results of a 5-year study of commercial c-Si PV modules in which the authors found a linear relationship between slow Isc degradation rates (-0.2%/year tob-0.5% year) and UV radiation dose [33]. The authors did not attribute the decrease in Isc to EVA browning, noting an example of one module with an 8% drop in Isc and no obvious change in encapsulant appearance.
- Osterwald *et al.*'s initial 2003 study was followed up by a 2005 study of EVA encapsulated and unencapsulated Si cell Isc degradation rates with UV exposure [22].
- The authors observed a 2% drop in lsc with a UV dose of 1056 MJ/m² (~3.8 years of outdoor exposure) in unencapsulated cells [22].
- The degradation rate with UV exposure of unencapsulated cells of varying types (*e.g.*, cast c-Si vs. Cz c-Si, with and without TiO₂, etc.) varied by a factor of ~2.7X [22].
- Unencapsulated cells kept in an oven as a control showed no change in Isc.
- Fig. shown from Ref. [22] for unencapsulated cells.

Intrinsic c-Si Isc Degradation with UV Exposure

• King *et al.*, were able to show the use of Ce-Doped glass and a browning-resistant EVA formulation resulted in a stable PV module Isc after 7 years of outdoor exposure in Albuquerque [19]. Figure shown below taken from Ref. [19].

Simulating Outdoor UV Exposure

Artificial Light Sources

- Several artificial light sources that have been used for indoor UV exposure, including Xenon Arc Lamps [10], [12]–[14], [16]–[18], [28], [30], [34]–[37], [27], [38]–[40], Metal Halide Arc-Lamps [22], [34], [35], [41], and UV fluorescent lamps [4], [29], [35], [37], [39], [42]–[45].
- At least one study found differences in transmission spectra of EVA encapsulant aged in natural sunlight for 17 years and EVA encapsulant aged at high UV irradiances [34]. Another study used Raman Spectroscopy to compare outdoor aging of PV Modules with indoor exposure from fluorescent lamps [42].
- One major challenge is accurate spectral and irradiance measurements of UV irradiance.
- Fraunhofer ISE has performed an inter-comparison of UV sources and irradiance measurement sensors from accredited laboratories and major PV module manufacturer test centers, and errors as large as 120% in the calibrations of irradiance sensors [41].

Fig. A taken from Ref. [41]. Fig. B taken from Ref. [29].

Atonometrics UV Exposure System

References

- [1] "IEC 61215 ed2.0 Crystalline silicon terrestrial photovoltaic (PV) modules Design qualification and type approval." IEC, 2005.
- [2] "IEC 61646 ed2.0 Thin-film terrestrial photovoltaic (PV) modules Design qualification and type approval." IEC, 2008.
- [3] ASTM International, West Conshohocken, PA, "ASTM Standard G173, 2008, 'Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surfaces'."
- [4] M. Koehl, D. Philipp, N. Lenck, and M. Zundel, "Development and application of a UV light source for PV-module testing," 2009, pp. 741202–741202–7.
- [5] M. Köhl, "The challenges of testing the UV-impact on PV-modules," Golden, Colorado, 2012.
- [6] F. J. Pern, "Ethylene-vinyl acetate (EVA) encapsulants for photovoltaic modules: Degradation and discoloration mechanisms and formulation modifications for improved photostability," *Die Angewandte Makromolekulare Chemie*, vol. 252, no. 1, pp. 195–216, Dec. 1997.
- [7] H. J. Wenger, J. Schaefer, A. Rosenthal, B. Hammond, and L. Schlueter, "Decline of the Carrisa Plains PV power plant: the impact of concentrating sunlight on flat plates," in *Conference Record of the 22nd IEEE Photovoltaic Specialists Conference*, Las Vegas, NV, 1991, pp. 586–592.
- [8] J. Pern, "Module Encapsulation Materials, Processing and Testing," Shanghai, China, 2008.
- [9] D. C. Jordan and S. R. Kurtz, "Photovoltaic Degradation Rates-an Analytical Review," *Progress in Photovoltaics: Research and Applications*, vol. 21, no. 1, pp. 12–29, Jan. 2013.
- [10] W. H. Holley, S. C. Agro, J. P. Galica, L. A. Thoma, R. S. Yorgensen, M. Ezrin, P. Klemchuk, and G. Lavigne, "Investigation into the causes of browning in EVA encapsulated flat plate PV modules," in *Conference Record of the 24th IEEE Photovoltaic Specialists Conference*, Waikoloa, HI, 1994, vol. 1, pp. 893–896.
- [11] D. Berman, S. Biryukov, and D. Faiman, "EVA laminate browning after 5 years in a grid-connected, mirror-assisted, photovoltaic system in the Negev desert: effect on module efficiency," *Solar Energy Materials and Solar Cells*, vol. 36, no. 4, pp. 421–432, Apr. 1995.
- [12] M. D. Kempe, G. J. Jorgensen, K. M. Terwilliger, T. J. McMahon, C. E. Kennedy, and T. T. Borek, "Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices," *Solar Energy Materials and Solar Cells*, vol. 91, no. 4, pp. 315–329, Feb. 2007.
- [13] P. Klemchuk, M. Ezrin, G. Lavigne, W. Holley, J. Galica, and S. Agro, "Investigation of the degradation and stabilization of EVAbased encapsulant in field-aged solar energy modules," *Polymer Degradation and Stability*, vol. 55, no. 3, pp. 347–365, Mar. 1997.
- [14] F. J. Pern and A. W. Czanderna, "EVA degradation mechanisms simulating those in PV modules," 1992, vol. 268, pp. 445–452.
- [15] M. Kempe, M. Reese, A. Dameron, and T. Moricone, "Types of Encapsulant Materials and Physical Differences Between Them," Golden, Colorado, 2010.
- [16] M. D. Kempe, "Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules," *Solar Energy Materials and Solar Cells*, vol. 94, no. 2, pp. 246–253, Feb. 2010.
- [17] W. H. Holley, S. C. Agro, J. P. Galica, and R. S. Yorgensen, "UV stability and module testing of nonbrowning experimental PV encapsulants," in *Conference Record of the 25th IEEE Photovoltaic Specialists Conference*, Washington, DC, 1996, pp. 1259–1262.

- [18] M. D. Kempe, T. Moricone, and M. Kilkenny, "Effects of cerium removal from glass on photovoltaic module performance and stability," 2009, p. 74120Q–74120Q–12.
- [19] D. L. King, M. A. Quintana, J. A. Kratochvil, D. E. Ellibee, and B. R. Hansen, "Photovoltaic module performance and durability following long-term field exposure," presented at the National center for photovoltaics (NCPV) 15th program review meeting, Denver, CO, 1999, pp. 565–571.
- [20] A. Parretta, M. Bombace, G. Graditi, and R. Schioppo, "Optical degradation of long-term, field-aged c-Si photovoltaic modules," *Solar Energy Materials and Solar Cells*, vol. 86, no. 3, pp. 349–364, Mar. 2005.
- [21] W. J. H. and P. R. C., "Reliability of EVA modules," in *Conference Record of the 23rd IEEE PV Specialists Conference*, Louisville, KY, 1993, pp. 1090–1094.
- [22] C. R. Osterwald, J. Pruett, and T. Moriarty, "Crystalline silicon short-circuit current degradation study: initial results," in *Conference Record of the 31st IEEE Photovoltaic Specialists Conference*, Lake Buena Vista, FL, 2005, pp. 1335–1338.
- [23] A. Skoczek, T. Sample, and E. D. Dunlop, "The Results of Performance Measurements of Field-aged Crystalline Silicon Photovoltaic Modules," *Prog. Photovolt: Res. Appl.*, vol. 17, pp. 227–240.
- [24] E. D. Dunlop and D. Halton, "The performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure," *Progress in Photovoltaics: Research and Applications*, vol. 14, no. 1, pp. 53–64, Jan. 2006.
- [25] M. A. Quintana, D. L. King, T. J. McMahon, and C. R. Osterwald, "Commonly observed degradation in field-aged photovoltaic modules," in *Conference Record of the 29th IEEE Photovoltaic Specialists Conference*, New Orleans, LA, 2002, pp. 1436–1439.
- [26] C. E. Chamberlin, M. A. Rocheleau, M. W. Marshall, A. M. Reis, N. T. Coleman, and P. A. Lehman, "Comparison of PV module performance before and after 11 and 20 years of field exposure," in *Conference Record of the 37th IEEE Photovoltaic Specialists Conference*, Seattle, WA, 2011, pp. 000101–000105.
- [27] G. Jorgensen, K. Terwilliger, S. Glick, J. Pern, and T. McMahon, "Materials Testing for PV Module Encapsulation," presented at the National Center for Photovoltaics and Solar Program Review Meeting, Denver, CO, 2003.
- [28] M. D. Kempe, M. Kilkenny, T. J. Moricone, and J. Z. Zhang, "Accelerated stress testing of hydrocarbon-based encapsulants for medium-concentration CPV applications," in *Conference Record of the 34th IEEE Photovoltaic Specialists Conference*, Philadelphia, PA, 2009, pp. 001826–001831.
- [29] K. R. McIntosh, N. E. Powell, A. W. Norris, J. N. Cotsell, and B. M. Ketola, "The effect of damp-heat and UV aging tests on the optical properties of silicone and EVA encapsulants," *Progress in Photovoltaics: Research and Applications*, vol. 19, no. 3, pp. 294– 300, May 2011.
- [30] K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, "The effect of accelerated aging tests on the optical properties of silicone and EVA encapsulants," in *Proceedings of the 24th European PVSEC*, Hamburg, Germany, 2009.
- [31] K. R. McIntosh, J. N. Cotsell, A. W. Norris, N. E. Powell, and B. M. Ketola, "An optical comparison of silicone and EVA encapsulants under various spectra," in *Conference Record of the 35th IEEE Photovoltaic Specialists Conference*, Honolulu, HI, 2010, pp. 000269–000274.

- [32] C. G. Zimmermann, "Time dependent degradation of photovoltaic modules by ultraviolet light," *Applied Physics Letters*, vol. 92, no. 24, p. 241110, 2008.
- [33] C. R. Osterwald, "Degradation in weathered crystalline-silicon PV modules apparently caused by UV radiation," in *Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion*, Osaka, Japan, 2003, vol. 3, pp. 2911–2915.
- [34] T. Shioda, "UV accelerated test condition based on analysis of field-exposed PV modules," Gaithersburg, MD, Oct-2011.
- [35] C. R. Osterwald and T. J. McMahon, "History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review," *Prog. Photovolt: Res. Appl.*, vol. 17, no. 1, pp. 11–33, Jan. 2009.
- [36] M. D. Kempe, "Accelerated UV Test Methods for Encapsulants of Photovoltaic Modules," presented at the 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, 2008.
- [37] G. J. Jorgensen and T. J. McMahon, "Accelerated and outdoor aging effects on photovoltaic module interfacial adhesion properties," *Progress in Photovoltaics: Research and Applications*, vol. 16, no. 6, pp. 519–527, Sep. 2008.
- [38] G. D. Barber, G. J. Jorgensen, K. Terwilliger, S. H. Glick, J. Pern, and T. J. McMahon, "New barrier coating materials for PV module backsheets," in *Conference Record of the 29th IEEE Photovoltaic Specialists Conference*, New Orleans, LA, 2002, pp. 1541– 1544.
- [39] C. R. Osterwald, J. Pruett, D. R. Myers, S. Rummel, A. Anderberg, L. Ottoson, and T. Basso, "Real-Time and Accelerated Solar Weathering of Commercial PV Modules," presented at the NCPV Program Review Meeting, Lakewood, CO, 2001.
- [40] V. Saly, M. Ruzinsky, and P. Redi, "Indoor study and ageing tests of solar cells and encapsulations of experimental modules," presented at the 24th International Spring Seminar on Electronics Technology: Concurrent Engineering in Electronic Packaging, Calimanesti-Caciulata, Romania, 2001, pp. 59–62.
- [41] D. Philipp, K.-A. Weiss, and M. Koehl, "Inter-laboratory comparison of UV-light sources for accelerated durability testing of PV modules," in *Proc. SPIE 8112, Reliability of Photovoltaic Cells, Modules, Components, and Systems IV, 81120G*, 2011, vol. 8112, p. 81120G–81120G–5.
- [42] C. Peike, T. Kaltenbach, K. A. Weiß, and M. Koehl, "Indoor vs. outdoor aging: polymer degradation in PV modules investigated by Raman spectroscopy," 2012, p. 84720V–84720V–8.
- [43] J. Mori, "Light source for PV modules test," 19-Jan-2012.
- [44] T. Sample, A. Skoczek, M. Field, M. Köhl, D. Geyer, and W. Herrmann, "Accelerated Ageing of Seven Different Thin-Film Module Types by Sequential Exposure to Damp Heat or Damp Heat with either Additional Applied Voltage or Ultraviolet Light," in *Conference Record of the 24th European Photovoltaic Solar Energy Conference*, Hamburg, Germany, 2009, pp. 3241 – 3247.
- [45] "A Choice of Lamps for the QUV," Q-Lab Corporation, Technical Bulletin LU-8160, 2006.

